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Abstract

Tensor decomposition techniques have shown great successes in machine learning
and data science by extending classical algorithms based on matrix factorization to
multi-modal and multi-way data. However, there exist many tensor decomposition
models (CP, Tucker, Tensor Train, etc.), and the rank of such a decomposition
is typically a collection of integers rather than a unique number, making model
and hyper-parameter selection a tedious and costly task. At the same time, tensor
network methods are powerful tools developed in the physics community which
have recently shown their potential for machine learning applications and offer
a unifying view of the various tensor decomposition models. In this paper, we
leverage the tensor network formalism to develop a generic and efficient adaptive
algorithm for tensor learning. Our method is based on a simple greedy approach
optimizing a differentiable loss function starting from a rank one tensor and suc-
cessively identifying the most promising tensor network edges for small rank
increments. Our algorithm can adaptively identify tensor network structures with
small number of parameters that effectively optimize the objective function from
data. The framework we introduce is very broad and encompasses many com-
mon tensor optimization problems. Experiments on tensor decomposition and
tensor completion tasks with both synthetic and real-world data demonstrate the
effectiveness of the proposed algorithm.

1 Introduction

Matrix factorization is ubiquitous in machine learning and data science and is at the backbone of
many algorithms. Tensor decomposition techniques emerged as a powerful generalization of matrix
factorization. They are particularly suited to handle high-dimensional multi-modal data and have been
successfully applied in neuroimaging [44], signal processing [3, 32], spatio-temporal analysis [1, 30]
and computer vision [20]. Common tensor learning tasks include tensor decomposition (finding a
low rank approximation of a given tensor), tensor regression (which extends linear regression to the
multi-linear setting) and tensor completion (inferring a tensor from a subset of observed entries).

Akin to matrix factorization, tensor methods rely on factorizing a high-order tensor into small factors.
However, in contrast with matrices, there exist many different ways of decomposing a tensor, each
one giving rise to a different notion of rank, including CP, Tucker, Tensor Train (TT) and Tensor
Ring (TR). For most tensor learning problems, there is no clear way of choosing which decomposition
model to use and the cost of model mis-specification can be high. It may even be the case that none
of the commonly used models is suited for the task, and new decomposition models would achieve
better tradeoffs between minimizing number of parameters and minimizing a given loss function.
∗The ordering of authors is alphabetical and do not reflect the level of contribution of each author.
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We propose an adaptive tensor learning algorithm which is agnostic to decomposition model. Our
approach relies on the tensor network formalism which has shown great success in the physics
community [28, 7, 6] and has recently demonstrated its potential in machine learning for compress-
ing models [23, 39, 8, 24, 15, 41], developing new insights on the expressiveness of deep neural
networks [4, 16] and designing novel approaches to supervised [34, 9] and unsupervised [33, 11, 22]
learning. Tensor networks offer a unifying view of tensor decomposition models, allowing one to
reason about tensor factorization in a general manner, without focusing on a particular model.

In this work, we introduce a general tensor learning framework unifying common problems including
tensor decomposition, regression and completion. We show how this framework naturally generalizes
beyond common decomposition models to arbitrary tensor networks. This leads us to define the novel
tensor optimization problem of minimizing a loss over arbitrary tensor network structures under a
constraint on the number of parameters. To the best of our knowledge, this is the first time that this
problem is considered. The resulting problem is a bi-level optimization problem where the upper
level is a discrete optimization over tensor network structures and the lower level is a continuous
optimization of a given loss function. We propose a greedy approach to optimize the upper level
problem combined with automatic differentiation and continuous optimization techniques to optimize
the lower level problem. Starting from a rank one initialization, the greedy algorithm successively
identifies the most promising edge of a tensor network for a rank increment, making it possible to
adaptively identify the tensor network structure which is best suited for the task at hand from data.

Summary of the contributions We introduce a general framework for tensor learning along with
a learning algorithm which is agnostic to decomposition models. The greedy algorithm we propose is
conceptually simple and experiments on tensor decomposition and completion tasks showcase its
effectiveness. We believe this work opens the door to promising directions for developing tensor
network based learning algorithms going beyond classical decomposition models commonly used
by practitioners. To the best of our knowledge, this is the first time that the problem of learning the
structure of tensor networks is considered in such a general framework encompassing a wide range of
tensor learning problems, and our work is the first to propose a learning algorithm which is agnostic
to decomposition models and can adaptively discover tensor network structures from data.

Related work Adaptive tensor learning algorithms have been previously proposed but they only
consider determining the rank(s) of a specific decomposition and are often tailored to a tensor learning
task (e.g. decomposition or regression). In [1], a greedy algorithm is proposed to adaptively find the
ranks of a Tucker decomposition for a spatio-temporal forecasting task and in [38] an adaptive Tucker
based algorithm is proposed for background substraction. In [42], the authors present a Bayesian
approach for automatically determining the rank of a CP decomposition. In [2] an adaptive algorithm
for tensor decomposition in the hierarchical Tucker format is proposed. In [10] a stable rank-adaptive
alternating least square algorithm is introduced for completion in the TT format. Exploring other
decomposition relying on the tensor network formalism has been sporadically explored. The work
which is the most closely related to our contribution is [19] where evolutionary algorithms are used to
approximate the best tensor network structure to exactly decompose a given target tensor. In contrast
with our work, [19] only considers the problem of tensor decomposition whereas we consider an
arbitrary loss function over tensor parameters. Lastly, [12] propose to explore the space of tensor
network structures for compressing neural networks, a rounding algorithm for general tensor networks
is proposed in [21] and the notions of rank induced by arbitrary tensor networks are studied in [40].

2 Preliminaries

In this section, we present basic notions of tensor algebra and tensor networks. We start by introducing
some notations. For any integer k we use [k] to denote the set of integers from 1 to k. We use lower
case bold letters for vectors (e.g. v ∈ Rd1), upper case bold letters for matrices (e.g. M ∈ Rd1×d2)
and bold calligraphic letters for higher order tensors (e.g. T ∈ Rd1×d2×d3). The ith row (resp.
column) of a matrix M will be denoted by Mi,: (resp. M:,i). This notation is extended to slices of a
tensor in the straightforward way.

Tensors and tensor networks We first recall basic definitions of tensor algebra; more details
can be found in [17]. A tensor T ∈ Rd1×···×dp can simply be seen as a multidimensional array
(T i1,··· ,ip : in ∈ [dn], n ∈ [p]). The inner product of two tensors is defined by 〈S,T 〉 =
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Figure 1: Tensor network representation of a vector v ∈ Rd, a matrix M ∈ Rm×n and a tensor
T ∈ Rd1×d2×d3 .

A B = AB A = Tr(A) T B = T ×3 B T T = ‖T ‖2F

Figure 2: Tensor network representation of common operation on matrices and tensors.

∑
i1,··· ,ip Si1···ipT i1···ip and the Frobenius norm of a tensor is defined by ‖T ‖2F = 〈T ,T 〉. The

mode-n matrix product of a tensor T and a matrix X ∈ Rm×dn is a tensor denoted by T ×n X. It is
of size d1 × · · · × dn−1 ×m× dn+1 × · · · × dp and is obtained by contracting the nth mode of T
with the second mode of X, e.g. for a 3rd order tensor T , we have (T ×2X)i1i2i3 =

∑
j T i1ji3Xi3j .

Tensor network diagrams allow one to represent complex operations on tensors in a graphical and
intuitive way. A tensor network is simply a graph where nodes represent tensors, and edges represent
contractions between tensor modes, i.e. a summation over an index shared by two tensors. In a
tensor network, the arity of a vertex (i.e. the number of legs of a node) corresponds to the order of
the tensor (see Figure 1). Connecting two legs in a tensor network represents a contraction over the

corresponding indices. Consider the following simple tensor network with two nodes: A x
m n .

The first node represents a matrix A ∈ Rm×n and the second one a vector x ∈ Rn. Since this tensor
network has one dangling leg (i.e. an edge which is not connected to any other node), it represents a
first order tensor, i.e. a vector. The edge between the second leg of A and the leg of x corresponds
to a contraction between the second mode of A and the first mode of x. Hence, the resulting tensor
network represents the classical matrix-product, which can be seen by calculating the ith component
of this tensor network:

A xi =
∑

j Aijxj = (Ax)i . Other examples of tensor network representations of com-
mon operations on matrices and tensors can be found in Figure 2.

Tensor decomposition and tensor rank We now briefly present the most common tensor decom-
position models. For the sake of simplicity we consider a fourth order tensor T ∈ Rd1×d2×d3×d4 ,
each decomposition can be straightforwardly extended to higher-order tensors. A CP decomposition
of T is an expression of T as a sum of rank one tensors [14], T =

∑R
r=1 ar ◦ br ◦ cr ◦ dr, and

the CP rank of T is the smallest R for which such a decomposition exists. A Tucker decompo-
sition [36] decomposes T as the product of a core tensor G ∈ RR1×R2×R3×R4 with four factor
matrices Ui ∈ Rdi×Ri for i = 1, · · · , 4: T = G ×1 U1 ×2 U2 ×3 U3 ×4 U4. The Tucker rank,
or multilinear rank, of T is the smallest tuple (R1, R2, R3, R4) for which such a decomposition
exists (note that the notion of Tucker rank is well defined even though there is no total order on tuples
of integers [5]). The tensor ring (TR) decomposition [43, 25, 29] (also known as matrix product states
in the physics community) expresses each component of T as the trace of a product of slices of four
core tensors G(1) ∈ RR0×d1×R1 , G(2) ∈ RR1×d2×R2 , G(3) ∈ RR2×d3×R3 and G(4) ∈ RR4×d4×R0 :
T i1,i2,i3,i4 = Tr(G(1)

:,i1,:
G(2)

:,i2,:
G(3)

:,i3,:
G(4)

:,i4,:
). The tensor train (TT) decomposition [26] is a particular

case of the tensor ring decomposition where R0 must be equal to 1 (R0 is thus omitted when referring
to the rank of a TT decomposition). Similarly to CP and Tucker, the TT and TR decompositions
naturally give rise to an associated notion of rank: the TR rank (resp. TT rank) is the smallest tuple
(R0, R1, R2, R3) (resp. (R1, R2, R3)) such that a TR (resp. TT) decomposition exists.

Tensor networks offer a unifying view of all these tensor decomposition models: Figure 3 shows
the tensor network representation of each decomposition model. Each decomposition is naturally
associated with the graph topology of the underlying tensor network. For example, the Tucker
decomposition corresponds to star graphs, the TT decomposition corresponds to chain graphs, and
the TR decomposition model corresponds to cyclic graphs. The relation between the rank of a
decomposition and its number of parameters is different for each model. Letting p be the order of the
tensor, d its largest dimension and R be the rank of the decomposition (assuming uniform ranks for
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Figure 3: Tensor network representation of common decomposition models for a 4th order tensor.
For CP, the black dot represents a hyperedge corresponding to a joint contraction over 4 indices.

Tucker, CP and TT), the number of parameters is in O (pdR) for CP, O (Rp + pdR) for Tucker, and
O
(
pdR2

)
for TT and TR. One can see that the Tucker decomposition is not well suited for tensors

of very high order since the size of the core tensor grows exponentially with the order of the tensor.

3 Tensor Learning Framework

In this section, we introduce a unifying view of common tensor learning problems. Most tensor
learning problems can be seen as special cases of the following optimization problem:

min
W∈Rd1×···×dp

L(W) s.t. rank(W) ≤ R (1)

where L : Rd1×···×dp → R is a loss function and rank(W) denotes some notion of tensor rank (e.g.
CP, Tucker, TT, ...). The rank constraint R is either a single number or a tuple of integers depending
on the decomposition considered and it often corresponds to an hyper-parameter of the underlying
tensor learning problem controlling model capacity.

Different choices of loss functions in Problem 1 give rise to different common tensor learning
problems. For tensor decomposition, the objective is to find the best low rank approximation of a given
target tensor X and a common choice of loss function is L(W) = ‖W −X‖2F . One form of tensor
regression consists in learning a linear function f : Rd1×···×dp → R from a training set of input-output
examples {(X (n), y(n))}Nn=1 ⊂ Rd1×···dp×R where each y(n) ' f(X (n)). A common choice of loss
function for tensor regression is the mean squared error: L(W) = 1

N

∑N
n=1(〈W ,X (i)〉 − y(i))2.

The tensor completion task consists in estimating a target tensor X ∈ Rd1×···×dp from a set of
observed entries {X i1,··· ,ip}(i1,··· ,ip)∈Ω where Ω ⊂ [d1]× · · · × [dp]. A common loss function for
tensor completion is again the squared error: L(W) = 1

|Ω|
∑

(i1,··· ,ip)∈Ω(Wi1,··· ,ip −X i1,··· ,ip)2.
Lastly, learning matrix product state models for classification [34] and sequence modeling [11] also
falls within this general formulation by using the cross-entropy or log likelihood as a loss function.

The rank constraint in Problem 1 often serves two purposes: it acts as a regularizer but is also a
way to make the problem tractable. Indeed, in some instances of these tensor learning problems
the size of the tensor parameter W is so large that it cannot be stored in memory. Unfortunately,
for almost all common tensor learning tasks, Problem 1 is NP-hard because of the tensor rank
constraint [13]. There are two common ways of handling this constraint: either a convex relaxation
is used and the resulting problem is solved using classical convex optimization toolboxes, or the
objective function is minimized with respect to the factors involved in the decomposition of the
tensor W rather than w.r.t. W itself. For the latter, an example for a tensor decomposition task
with a Tucker rank constraint would be to rewrite Problem 1 in the following unconstrained form:
minG∈RR1×···×Rp ,Ui∈Rdi×Ri ,1≤i≤p ‖G ×1 U1 ×2 · · · ×p Up −X‖2F , where the rank constraint has
been removed but the objective function is not convex anymore. This is the approach we will take for
the greedy algorithm we introduce in the following section.

4 A Greedy Algorithm for Tensor Learning

We now show how the framework introduced in the previous section naturally generalizes beyond
common decompositions to arbitrary tensor networks. This leads us to define the novel tensor
optimization problem of minimizing a loss over arbitrary tensor network structures under a constraint
on the number of parameters. We then present a simple greedy algorithm to tackle this problem.

For most tensor learning problems, there is no clear way of choosing which decomposition model
to use. Moreover, the cost of model mis-specification can be high: e.g. for a tensor with a low
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TR rank, the best low rank approximation in the TT format will almost always be worse than
a TR decomposition with the same number of parameters. It may also happen that none of the
commonly used models is suited for the task and using a new tensor network structure would achieve
the best tradeoff between minimizing the number of parameters and minimizing the loss function.
Note that achieving this tradeoff can have different implications depending on the task: for tensor
decomposition this would lead to a better compression ratio, while for tensor regression this would
lead to a better sample complexity of the learning algorithm. These considerations lead us to consider
the problem of finding the best tensor network structure to minimize a given loss, where one wants
to minimize both the number of parameters and the objective achieved by the tensor network. Of
course, tensor networks with a larger number of parameters will tend to achieve lower values of the
loss function. A natural way to state the problem is thus: given a bound on the maximum number of
parameters, find the tensor network structure and core tensors minimizing a given loss function.

Before formalizing the tensor network structure learning problem, we introduce a few notations. For
the sake of simplicity, we only consider tensor networks having one factor per dimension of the
parameter tensor W ∈ Rd1×···×dp , where each of the factors has one leg corresponding to one of the
dimensions (i.e. we do not consider internal core tensors such as in the Tucker decomposition, nor
hyper-edges as in the CP decomposition). Note that both the TT and TR decompositions fall in this
setting. A tensor network structure can then be represented as a collection of ranks (Ri,j)1≤i<j≤p
where each Ri,j ≥ 1 is the dimension of the edge connecting the ith and jth nodes of the tensor
network; if there is no edge between nodes i and j, Ri,j is set to one†. Consequently, a tensor network
decomposition of W ∈ Rd1×···×dp is given by a collection of core tensors G(1), · · · ,G(p) where
each G(i) is of size R1,i × · · · ×Ri−1,i × di ×Ri,i+1 × · · · ×Ri,p. Each core tensor is of order p
but some of its dimensions may be equal to one. We use TN(G(1), · · · ,G(p)) to denote the resulting
tensor. Formally, for an order 4 tensor we have

TN(G(1), · · · ,G(4))i1i2i3i4 =

R1,2∑
j21=1

R1,3∑
j31=1

· · ·
R3,4∑
j43=1

G(1)

i1,j21 ,j
3
1 ,j

4
1
G(2)

j21 ,i2,j
3
2 ,j

4
2
G(3)

j31 ,j
3
2 ,i3,j

4
3
G(4)

j41 ,j
4
2 ,j

4
3 ,i4

.

As an illustration, for a TT decomposition the ranks of the tensor network representation would be
such that Ri,j 6= 1 if and only if j = i + 1.

We now formalize the tensor structure learning problem. Given a loss function L, we want to solve

min
Ri,j,

1≤i<j≤p

min
G(1),··· ,G(p)

L(TN(G(1), · · · ,G(p))) s.t. size(G(1), · · · ,G(p)) ≤ C (2)

where L is a loss function, each core tensor G(i) ∈ RR1,i×···×Ri−1,i×di×Ri,i+1×···×Ri,p , size is a
function returning the sum of the number of components of its arguments and C is a bound on the
maximum number of parameters of the tensor network. Note that size(G(1), · · · ,G(p)) is simply the
number of parameters of the tensor network, which is equal to

∑p
i=1 R1,i · · ·Ri−1,idiRi,i+1 · · ·Ri,p.

Hence, if K is the maximum arity of a node in a tensor network, its number of parameter is in
O
(
pdRK

)
where d = maxi di and R = maxi,j Ri,j .

Problem 2 is a bi-level optimization problem where the upper level is a discrete optimization over
tensor network structures, and the lower level is a continuous optimization (assuming the loss function
is continuous). If it is possible to solve the lower level continuous optimization, an exact solution
can be found by enumerating the search space of the upper level, i.e. enumerating all tensor network
structures satisfying the constraint on the number of parameters, and selecting the one achieving
the lower value of the objective. This approach is of course not realistic since the search space is
combinatorial in nature (its size will grow exponentially with the order of W). Moreover, for most
tensor learning problems the lower level continuous optimization problem is NP-hard. We now
propose a simple greedy approach to optimize the upper level problem combined with automatic
differentiation and continuous optimization techniques to optimize the lower level problem.

The greedy algorithm for tensor learning consists in first optimizing the loss function L starting
from a rank one initialization of the tensor network, i.e. Ri,j is set to one for all i, j and each
core tensor G(i) is randomly initialized to a vector of dimension di (seen as a tensor of shape
†Note that in a tensor network, having an edge of dimension one is equivalent to having no edge (akin to the

fact that the product of an m× 1 and a 1× n matrices is equivalent to the outer product of two vectors).
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Algorithm 1 Greedy-TL: Greedy algorithm for tensor learning.

Input: Loss function L : Rd1×···×dp → R, rank increment R.
1: // Initialize tensor network to a random rank one tensor and optimize loss function.
2: Ri,j ← 1 for 1 ≤ i < j ≤ p

3: Initialize core tensors G(i) ∈ RR1,i×···×Ri−1,i×di×Ri,i+1×···×Ri,p randomly
4: (G(1), · · · ,G(p))← optimize L(TN(G(1), · · · ,G(p))) w.r.t. G(1), · · · ,G(p)

5: repeat
6: (i, j)← find-best-edge(L, (G(1), · · · ,G(p)))

7: G(i) ← add-slice(G(i), j, R) // add R new slices to the jth mode of G(i)

8: G(j) ← add-slice(G(j), i, R) // add R new slices to the ith mode of G(j)

9: Ri,j ← Ri,j + R
10: // Optimize tensor network with rank of edge (i, j) increased by R

11: (G(1), · · · ,G(p))← optimize L(TN(G(1), · · · ,G(p))) w.r.t. G(1), · · · ,G(p)

12: until Stopping criterion

1× · · · × 1× di × 1× · · · × 1). Then, at each iteration of the greedy algorithm, the most promising
edge of a tensor network is identified, the corresponding rank is increased and the loss function is
optimized again w.r.t. the core tensors of the tensor network. A key idea of our approach is to restart
the continuous optimization process where it left off at the previous iteration of the greedy algorithm.
This is achieved by initializing the new slices of the two core tensors connected by the incremented
edge to values close to 0, while keeping all the other parameters of the tensor network unchanged‡.
As an illustration, for a tensor network of order 4, increasing the rank of the edge (1, 2) by 1 is done
by adding a slice of size d1×R1,3×R1,4 (resp. d2×R2,3×R2,4) to the second mode of G(1) (resp.
first mode of G(2)). After this operation, the new shape of G(1) will be d1× (R1,2 + 1)×R1,3×R1,4

and the one of G(2) will be (R1,2 + 1) × d2 × R2,3 × R2,4. Assuming that the loss function is
differentiable, common automatic differentiation and gradient based optimization techniques can
be used to minimize the loss function in the lower level problem. In this case, a simple heuristic to
identify the most promising edge is to optimize the loss function for a few epochs for each possible
edge and select the edge which led to the steepest decrease in the loss.

The overall greedy algorithm is summarized in Algorithm 1. For Problem 2, a natural stopping
criterion for the greedy algorithm is when the maximum number of parameters is reached. But more
evolved stopping criteria could be used. For example, in the case of tensor regression, the stopping
criterion could be based on validation data (for example using an early stopping scheme). It is worth
mentioning that the greedy algorithm can seamlessly incorporate structural constraints by restricting
the set of edges considered when identifying the best edge for a rank increment. For example, it could
be used to adaptively select the ranks of a TT or TR decomposition. Lastly, while we propose gradient
based methods for solving the lower level continuous optimization due to their broad applicability,
more efficient optimization methods specifically suited for a given loss function can be used (e.g.
using the alternating least square algorithm for tensor decomposition tasks).

Limitations We conclude this section by mentioning a few limitations of the proposed approach
and potential avenues to address them. First, Greedy-TL can be time consuming since it has to
test all possible edges at each iteration (quadratic in the order of the tensor). However, this step is
highly parallelizable and efficient task specific heuristics can be tailored to identify the best edge to
increment. Second, the greedy algorithm is one of the simplest ways of tackling the combinatorial
upper level discrete optimization problem, and is prone to identifying sub-optimal solutions. More
advanced discrete optimization techniques can be used, which is a promising direction for building
upon Greedy-TL; the A∗ search algorithm would be a first alternative to investigate. Lastly, the
tensor network structures learned by Greedy-TL do not contain hyper-edges and internal nodes, but
the greedy algorithm can easily be adapted to address this limitation, which is left for future work.

‡Indeed, one can show that if these slices were initialized exactly to 0, the resulting tensor network would
represent exactly the same tensor as the original one. It is however important to initialize the slices randomly to
break symmetries that could constrain the continuous optimization process.
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Figure 4: Reconstruction error as a function of the number of parameters for the tensor decomposition
experiment on three target tensors with different low rank structure (vertical line represent the
minimum number of parameters for a perfect reconstruction). The shaded area represents a 95%
confidence interval for the linear interpolations of the reconstruction errors over 10 different runs of
random walk.

5 Experiments

In this section we evaluate Greedy-TL on tensor decomposition and tensor completion tasks.

Implementation details We use PyTorch [27] and TensorNetwork [31] to implement
Greedy-TL (Algorithm 1). We use RMSprop [35] to optimize the loss function L (lines 4 and 11).
The learning rate is adaptively set at each step of the greedy algorithm by monitoring the loss and
restarting the optimization after dividing the learning rate by 2 if the loss did not decrease during
the first 10 epochs (initial learning rate is set to 0.1); the same optimization procedure is used for
the search phase we describe now. To identify the best edge (line 6), we test each possible edge for
a rank increment, optimize the loss for Tsearch epochs, and choose the edge leading to the largest
decrease in loss; Tsearch is set to 160 for the tensor decomposition experiments and to 40 for the
tensor completion experiments. In order to stabilize optimization during the search phase, the gradient
updates are only applied to the new slices for the first half of the Tsearch epochs and then applied to all
parameters for the remaining half. The optimization for the best rank increment (line 11) is restarted
from the point it was stopped during the search phase. The components of the new slices added to the
two core tensors before a rank increment (lines 7 and lines 8) are drawn independently from a normal
distribution with standard deviation 10−6. The rank increment parameter R of Greedy-TL is set to 1
for the tensor decomposition experiments and to 2 for the tensor completion ones.

Tensor decomposition We first consider a tensor decomposition task. We randomly generate three
target tensors of size 7× 7× 7× 7× 7 with the following tensor network structures:

TT target tensor

2 3 6 5

TR target tensor

2 3 4 5

5

5 2 5

2 2

“Triangle” target tensor

We run the greedy algorithm until it recovers an almost exact decomposition (stopping criterion is
achieved when the relative reconstruction error falls below 10−5). We compare Greedy-TL with CP,
Tucker and TT decomposition§ of increasing rank as baselines (we use uniform ranks for Tucker and
TT). We also include a simple random walk baseline based on Greedy-TL, where the edge for the
rank increment is chosen at random at each iteration of the greedy algorithm. We run the random walk
baseline for ten different random initializations. The results are shown in Figure 4 where we see that
the greedy algorithm outperforms all baselines for the the three target tensors. Notably, Greedy-TL
outperforms TT even on the TT target tensor. This is due to the fact that the rank of the TT target
tensor are not uniform and Greedy-TL is able to adaptively set different ranks to achieve the best
compression ratio. Furthermore, Greedy-TL is able to recover the exact tensor network structure
of the triangle target tensor. For the TT and TR target tensors, Greedy-TL identifies the following
tensor network structures at its last iteration:

TT target decomposition: 2 3 7 4

7
TR target decomposition: 2 3 3 7

64

§We use the implementations from the TensorLy python package [18] to perform these decompositions.
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Figure 5: Relative reconstruction error of the target for the completion tasks. In both experiments,
10% of the entries are randomly observed (results for TT-ALS and TR-ALS are reported from [37]).
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Figure 6: Recovered images from 10% of observed entries of the Einstein image for Greedy-TL,
TT-ALS and TR-ALS. Bold titles indicate the image with the best relative error for each method.

This experiment greatly showcases the potential cost of model mis-specification: both CP and Tucker
struggle to efficiently approximate the target tensors. Interestingly, even the random walk baseline
outperforms CP and Tucker for all target tensors.

Tensor completion We compare Greedy-TL with the TT and TR alternating least square algo-
rithms proposed in [37]. We consider two of the experiments presented in [37]: the completion of
an RGB image of Albert Einstein reshaped into a 6 × 10 × 10 × 6 × 10 × 10 × 3 tensor and of
the YaleFace database reshaped into a 6× 8× 6× 7× 8× 8× 19× 2 tensor (see [37] for details).
In both cases, 10% of entries are randomly observed. The relative errors as a function of number
of parameters are reported in Figure 5 where we see that Greedy-TL outperforms both methods
on the completion of the Einstein image and that all methods over-fit to the observed entries for
large number of parameters (though Greedy-TL seems less prone to over-fitting). Recovered images
for all methods are shown in Figure 6 along with the original image and observed pixels. The best
recovery error (9.68%) is achieved by Greedy-TL at iteration 26 with 26,085 parameters. The best
recovery errors for TT-ALS and TR-ALS are 20.70% and 10.83%, respectively (obtained at rank
18). At iteration 20, Greedy-TL already recovers an image with an error of 10.57% with 15,045
parameters, which is better than the best result of TR-ALS both in terms of parameters and relative
error. The images recovered at each iteration of Greedy-TL are shown in the supplementary material.
On the YaleFace data, Greedy-TL performs better than both methods for models with less than
10,000 parameters but falls behind TR-ALS for larger number of parameters. We posit that this is
due to the greedy algorithm selecting sub-optimal edges, which may be explained by the unevenness
of the dimensions of the YaleFace tensor: Greedy-TL seems to often choose to increment edges
connected to the node with the largest dimension. Taking into account the increase in number of
parameters when selecting the best edge is a promising direction to improve the greedy algorithm.

6 Conclusion

We introduced the novel problem of minimizing a loss function over tensor network structures
and parameters. Introducing this problem opens the door to designing efficient tensor learning
algorithms that are agnostic to decomposition models. We proposed a simple greedy approach to
tackle this problem and we demonstrated that it can outperform common methods tailored for specific
decomposition models with experiments on tensor decomposition and completion tasks. Among
other promising future directions, we plan on improving the proposed approach by exploring more
efficient discrete optimization techniques to solve the upper level discrete optimization problem.
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Figure 7: Learned tensor network ranks output by the Greedy-TL procedure on the Einstein image
experiment. Nodes of the tensor network are labeled by the dimension of their associated mode, with
the first 6 nodes describing the vertical (leftmost 3 nodes) and horizontal (next 3 nodes) position of
pixels, and the last node describing the 3 color channels. The first rank increase (iteration 2) occurs
between the large-scale horizontal and vertical modes of the network, with the connection of the
color mode occurring at iteration 6.

A Supplementary Material

Figure 8 shows the images recovered by Greedy-TL at each iteration of the greedy algorithm. From
these images, one can see that the tensor network node corresponding to the color channel of the
image (last mode of the tensor) is connected to another node for the first time at iteration 6 (distinct
colors appear in the image). Simply by looking at the images, one can also guess that the first rank
increase is between two of the 10-dimensional cores of the tensor network, which can be seen by
the rank one structure of each block of the 10× 10 grid appearing in images recovered in the first
iterations of the algorithm. These observations are verified by Figure 7, which shows the learned
ranks at various iterations of the greedy search.
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target image observed pixels
Iter. 1 - 55 param.

test error = 45.35%
Iter. 2 - 95 param.

test error = 37.73%
Iter. 3 - 175 param.
test error = 34.58%

Iter. 4 - 295 param.
test error = 30.28%

Iter. 5 - 495 param.
test error = 25.64%

Iter. 6 - 1041 param.
test error = 23.67%

Iter. 7 - 1641 param.
test error = 20.76%

Iter. 8 - 2001 param.
test error = 18.70%

Iter. 9 - 2961 param.
test error = 17.38%

Iter. 10 - 3273 param.
test error = 16.87%

Iter. 11 - 4353 param.
test error = 15.35%

Iter. 12 - 4905 param.
test error = 14.56%

Iter. 13 - 6105 param.
test error = 13.34%

Iter. 14 - 7125 param.
test error = 12.84%

Iter. 15 - 8175 param.
test error = 12.35%

Iter. 16 - 9225 param.
test error = 12.01%

Iter. 17 - 10635 param.
test error = 11.57%

Iter. 18 - 12045 param.
test error = 11.15%

Iter. 19 - 13395 param.
test error = 10.85%

Iter. 20 - 15045 param.
test error = 10.57%

Iter. 21 - 16695 param.
test error = 10.26%
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test error = 10.09%
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Figure 8: Solutions found by Greedy-ALS for the Einstein image completion experiments, labeled
by number of parameters and relative test error w.r.t. the full image.
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